Algorithm: Static_IO#

# Windows users have to encapsulate the code into a main function to avoid multiprocessing errors.
# def main():
import pygpc
import numpy as np
import matplotlib
# matplotlib.use("Qt5Agg")

from collections import OrderedDict

fn_results = 'tmp/static_IO'   # filename of output
save_session_format = ".pkl"    # file format of saved gpc session ".hdf5" (slow) or ".pkl" (fast)
np.random.seed(1)

Setup input and output data#

# We artificially generate some coordinates for the input data the user has to provide where the model was sampled
n_grid = 100
x1 = np.random.rand(n_grid) * 0.8 + 1.2
x2 = 1.25
x3 = np.random.rand(n_grid) * 0.6

# define the properties of the random variables
parameters = OrderedDict()
parameters["x1"] = pygpc.Beta(pdf_shape=[1, 1], pdf_limits=[1.2, 2])
parameters["x3"] = pygpc.Beta(pdf_shape=[1, 1], pdf_limits=[0, 0.6])

# generate a grid object from the input data
grid = pygpc.RandomGrid(parameters_random=parameters, coords=np.vstack((x1,x3)).T)

# get output data (here: Peaks function)
results = (3.0 * (1 - x1) ** 2. * np.exp(-(x1 ** 2) - (x3 + 1) ** 2)
           - 10.0 * (x1 / 5.0 - x1 ** 3 - x3 ** 5)
           * np.exp(-x1 ** 2 - x3 ** 2) - 1.0 / 3
           * np.exp(-(x1 + 1) ** 2 - x3 ** 2)) +  x2
results = results[:, np.newaxis]

Setting up the algorithm#

# gPC options
options = dict()
options["method"] = "reg"
options["solver"] = "LarsLasso"
options["settings"] = None
options["order"] = [9, 9]
options["order_max"] = 9
options["interaction_order"] = 2
options["error_type"] = "loocv"
options["n_samples_validation"] = None
options["fn_results"] = fn_results
options["save_session_format"] = save_session_format
options["backend"] = "omp"
options["verbose"] = True

# determine number of gPC coefficients (hint: compare it with the amount of output data you have)
n_coeffs = pygpc.get_num_coeffs_sparse(order_dim_max=options["order"],
                                       order_glob_max=options["order_max"],
                                       order_inter_max=options["interaction_order"],
                                       dim=len(parameters))

# define algorithm
algorithm = pygpc.Static_IO(parameters=parameters, options=options, grid=grid, results=results)

Running the gpc#

# initialize gPC Session
session = pygpc.Session(algorithm=algorithm)

# run gPC algorithm
session, coeffs, results = session.run()
 > Determining 55 gPC coeffs with 100 simulations!
Determine gPC coefficients using 'LarsLasso' solver ...

LOOCV 01 from 25 [=                                       ] 4.0%

LOOCV 02 from 25 [===                                     ] 8.0%

LOOCV 03 from 25 [====                                    ] 12.0%

LOOCV 04 from 25 [======                                  ] 16.0%

LOOCV 05 from 25 [========                                ] 20.0%

LOOCV 06 from 25 [=========                               ] 24.0%

LOOCV 07 from 25 [===========                             ] 28.0%

LOOCV 08 from 25 [============                            ] 32.0%

LOOCV 09 from 25 [==============                          ] 36.0%

LOOCV 10 from 25 [================                        ] 40.0%

LOOCV 11 from 25 [=================                       ] 44.0%

LOOCV 12 from 25 [===================                     ] 48.0%

LOOCV 13 from 25 [====================                    ] 52.0%

LOOCV 14 from 25 [======================                  ] 56.0%

LOOCV 15 from 25 [========================                ] 60.0%

LOOCV 16 from 25 [=========================               ] 64.0%

LOOCV 17 from 25 [===========================             ] 68.0%

LOOCV 18 from 25 [============================            ] 72.0%

LOOCV 19 from 25 [==============================          ] 76.0%

LOOCV 20 from 25 [================================        ] 80.0%

LOOCV 21 from 25 [=================================       ] 84.0%

LOOCV 22 from 25 [===================================     ] 88.0%

LOOCV 23 from 25 [====================================    ] 92.0%

LOOCV 24 from 25 [======================================  ] 96.0%

LOOCV 25 from 25 [========================================] 100.0%
LOOCV computation time: 0.12250995635986328 sec
-> relative loocv error = 2.1539488393624837e-05

Postprocessing#

# read session
session = pygpc.read_session(fname=session.fn_session, folder=session.fn_session_folder)

# Post-process gPC
pygpc.get_sensitivities_hdf5(fn_gpc=options["fn_results"],
                             output_idx=None,
                             calc_sobol=True,
                             calc_global_sens=True,
                             calc_pdf=True,
                             algorithm="standard")

# get a summary of the sensitivity coefficients
sobol, gsens = pygpc.get_sens_summary(fn_results, parameters)
print(sobol)
print(gsens)

# plot gPC approximation and IO data
pygpc.plot_gpc(session=session,
               coeffs=coeffs,
               random_vars=["x1", "x3"],
               output_idx=0,
               n_grid=[100, 100],
               coords=grid.coords,
               results=results)

# On Windows subprocesses will import (i.e. execute) the main module at start.
# You need to insert an if __name__ == '__main__': guard in the main module to avoid
# creating subprocesses recursively.
#
# if __name__ == '__main__':
#     main()
gPC approximation, Probability density
> Loading gpc session object: tmp/static_IO.pkl
> Loading gpc coeffs: tmp/static_IO.hdf5
> Adding results to: tmp/static_IO.hdf5
              sobol_norm (qoi 0)
['x1']                  0.861758
['x3']                  0.131113
['x1', 'x3']            0.007129
    global_sens (qoi 0)
x1            -0.958690
x3            -0.402739

Total running time of the script: (0 minutes 2.815 seconds)

Gallery generated by Sphinx-Gallery